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v ABSTRACT

. Any discontinuity 1n flow at a plane boundary is dispersed by the diffusion of vorticity
e into a boundary laver and wake. Experimental measurements in the past have been
Aonly correlated with empirical formulations. A generahization gives both the horizontal
A component and the vertical component of the mean velocity. In the laminar sublaver

the velocity 1s a solution of the diffusion equation. In the turbulent boundary laver
s the velocity can be expressed by a Fourier integral. In the free stream there 1s a
vertical persistence of velocity. The computation of velocity is provided by subroutines.
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INTRODUCTION

The drag on a ship i1s partly a viscous resistance and partly a wave resistance. The

AN
¢ 0 viscosity of the fluid causes a transport of momentum from the ship to the fluid. The
:~ \ momentum is located in a boundary layver at the surface of the ship, and in the wake
0:\ behind the ship. The boundary layer is laminar at the bow, but the boundary layer is
:'t‘:‘ turbulent at the stern. For a nonslip boundary condition the velocity relative to the
v ship 1s zero at the surface and 1s the velocity for free flow far from the surface. A
Vg knowledge of the velocity may be found from an analysis of the analogous problem
W in the flow over a plane.
"’f:' When a thin plate moves edgewise through a viscous fluid the plate entrains fluid
N if there is a nonslip boundary condition at the surface of the plate. Each differential
L element of surface of the plate sets up a current which trails downstream and spreads
out by diffusion. The velocity at the plate is the accumulated sum of velocities in
A, currents which have been created upstream.
& The boundary laver of a plate has been the subject of many investigations'~’. There
::§' are three principal methods of analysis The first method is statistical. It leads to a
;.:‘:‘ svstem in which the number of variables 1s greater than the number of equations.
g',i{.’ Various schemes for closure have been proposed. The second method is polynomial.
g The velocity is expressed as a power polvnomial in a himited region of a laminar
oY boundary layer. The third method is spectral The velocity is expressed as a Fourier
!:l:t' integral. The rate of change of the Fourier amplitude is determined by an
:e:“ integro-differential equation. The evolution of a velocity distribution from an initial
-o:l':v distribution is determined uniquely by the integro-differential equation.
'-_‘a:: The Fourier analysis has been applied to homogeneous isotropic turbulence. Contact
of the fluid with a solhid boundary is the origin of real turbulence.
; A comprehensive source of information about boundary layers is Boundary-Layer
:ﬁ Theory by Schlichting”. The Fourier analysis of flow in a fluid has been investigated
::::' by Batchelor® and by Orszag®.
K
"::, EQUATION OF CONTINUITY
_)_ A fluid consists of particles with random velocities. The number of particles per
i unit volume determines a median density p. Across any mathematical boundary there
o, is a flux of particles from both sides. A boundary which is moving at such a speed
e that the flux is zero defines a median velocity v.
:l:. In a continuous fluid the law of conservation of mass requires that within any
sl mathematical boundary the mass density p and the particle velocity v are related by
the equation
)
._‘q': P
:':‘: f 22 ar - fpv-ds =0 (1)
g
-""- where t is the time. dT 1s a volume element within the boundary, and ds i1s a surface
-l.‘;"‘ element on the boundary. Applhication of the Gauss theorem leads to the equation
A ‘
gt '
S:E:.E % + V(pv) = % +vVp +pVv= g—’;— +pVv=0 (2) !
"
e

The divergence of velocity is the rate of expansion of the fluid.
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EQUATION OF MOTION

The bulk modulus « is the rate of decrease of pressure per unit rate of expansion.
A pressure pulse 1s propagated through the fluid with the speed of sound (¥ p)*?
In a continuous fluid the gradient of velocity satisfies the identity

v = J(Tv - Uv) + §(Tv + T'y) (3)

where VU'v is the transpose of ¥v. The antisymmetric part is the rate of rotation {1 and
the svmmetric part is the rate of strain 8. There would be spinup of fluid particles
if stress were not symmetric. In an 1sotropic fluid the pressure is isotropic and shear
stress 1s proportional to shear rate. The strain rate is partly an 1sotropic expansion
rate. which 1s the trace of the strain rate, and is partly an anisotropic distortion rate,
which 1s the shear rate. The shear stress arises from the anisotropic distortion rate.
The stress I 1s given by the equation

S=-pl~{uvvi-2u8 (1)

where p 1s the pressure. and u is the viscosity.
The force on any mathematical boundary is given by the Gauss theorem

]

J T.Tdr = f:-ds (3)

where d7 1s a volume element within the boundary and ds is a surface element at the
boundary. The equation of motion per unit volume 1s given by the equation

dv
— =VX (6
P )
As a consequence of the identity
?"
"Wt V-Vv=VVvy (7)
) ‘f-
5’ the equation of motion is the Navier-Stokes equation
o i} d
e TX+V-VV=—VJ‘£+%EVV~V~EV~VV (8)
J ot p p P
.!
.,'.l. The kinematic viscosity v is given by the equation
o
W, p
o0
) For hvdrodvnamics the kinemattic viscosity is constant. Differentiation throughout the
hy equation of motion leads to the equation
!"
R d d
o Z(Tv) + vT(Tv) + (Wvov) = -0 | 2Lt Epg(o (10)
o at P p
1]
o where a tensor enclosed in parentheses 1s the contraction of the tensor by internal
. scalar multiplication This equation i1s a Poisson equation for the determination of
‘; pressure Differentiation throughout the equation of motion leads to the equation
X q q
M 3 H
W Y (Tsv) « v-V(Vrv) ~ [Uv-Ov] = p V-L(V-v) (11)
l.. :
145
o where a tensor enclosed in brackets is the contraction of the tensor by internal vector
'L; multipheastion This equation 1s a diffusion equation for the determination of vorticity.
’
‘e
DUX)
W 2
%

RN DMORICANC
¢ x?a',’n'fk"‘l‘;n’,‘n’ﬁl';:

LT Tt OO U ICRN AR AN IR
*':."x"‘.""’:“‘,J’!’"nt"'w’“':.‘?«‘.“’s.“’ AN ol 4



BLASIUS PROFILE

For two-dimensional flow it is fashionable to define Cartesian coordinates r, vy, z
o ' such that r is parallel to the plane in the direction of flow, y 1s perpendicular to the
plane. and z is parallel to the plane in the direction perpendicular to the flow Let
i, j. k be unit vectors 1n the directions of increasing r.y.z. The particle velocity v is
My ' given by the equation

V) . .
;.",:‘ v=ui~+j (12)
i:::! where the components u. v are zero at the plane but approach U, 0 with increasing y.
,:l" Continuity in an incompressible fluid 1s expressed by the equation
st g
'a‘gn du v
- — - —=0 (13)
dr Jdy

q v The continuity equation is satished when the components of velocity are derived from
3: a stream function y 1n accordance with the equations

ay U
3 u= Y 4 (14)
LA dy dx

N This follows from the principle that a second order derivative is independent of the
,-L'(' order of differentiation.
#Q'_ For stationary flow the derivative with re<pect to t1s zero Far downstream derivatives
‘;"\L, with respect to r approach zero. and the Navii. Stokes equation is reduced to the
e equation

'l':..( U — +1 — = — (15)
KD Far downstream the profile of the boundary laver approaches a constant limit.

l:':' The limiting profile is given by a relation between two dimensionless variables
. ¢ and ¢, which are defined by the equations

,U y .
.q'll £= \,/ ” ._\/_; v=vulr¢ (16)

o Differentiation leads to the equations

o —

80 : y WU

® u=U¢ v=z\ (60 (17)

Wt Then substitution in the reduced equation of motion leads to the Blasius equation
R (¢ 20" =0 (18)
Boundary conditions for this differential equation are given by the equations
PR ¢=¢=0 at ¢=0 (19)
AN ¢ =1 at e (20)

‘W' ' In the original derivation by Blasius' the variables were so defined that ¢ approached
f‘"‘ a limit of 2 The derivation herein follows the derivation by Schiichting’ where the
%A variables are so defined that ¢ approaches a limit of umty.
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"‘ An ascending series is given by the equation
‘a‘ o0
B ¢= L an¢™™m® (21)
' m=0
,{ This series satisfies the boundary conditions at ¢ = 0. Substitution in the differential
4 equation leads to the recurrence equation
,. \ m-1
1:._ Y (Bm -3k -2)(3m - 3k ~ 1)ax8pmp-y + 23M)3m + 1)(3m + 2)a,, = 0 (22)
'.' k=0
W
f': The recurrence is started with a value of a; which is adjusted by trial to make the
0: series meet the boundary conditions at ¢ - <. The computed value of a4, is 0.16603.
The ratio between successive coefficients of the series tends to a constant limit with
oy increasing order. It is possible to estimate a remainder after a finite number of terms
h on the basis of the geometric series. In no case can the series be used for ¢ greater
D than 5.69. where the ratio between terms becomes unity.
:!: For large values of ¢ the value of ¢ i1s the sum of a linear term and a correction.
> Correct to first order the correction is a solution of the equation
: ((+c)t"+2¢"=0 (23)
¢
My where ¢ is an arbitrary constant. The computed value of ¢ is —1.72077. The solution
‘ of the differential equation is given by the equations
W, it 1 2 1 2
(=¢+c-Alt+0) [ e s dg - 24 7409 (24)
N vt
»~ © .
N ¢=1 —Af e sl ag (25)
. ¢
' where A is an arbitrary constant. The arbitrary constant is selected so as to make
the corrected linear terms coincide with the series expansion at ¢ = 5.0. The integral
o in the correction is given by the equation
4
4:' ® 2 /=
‘,‘ f e 7 de = Vi [1 - erf(3(€ + )] (26)
¢

where erf is the error function.
. Previous analyses and computations on the Blasius profile are summarized by the
" data in a table in a paper by Howarth? which is the basis for the Table 7 1 in the
P, text by Schhichting” That table of data is reproduced by the following subroutine

Ny

1

. SUBROUTINE BLSSPF (AU, AN, AX, AY, FU, FV)

: (A EEE R E RS R R N R R R R R R R E A R R R R R R R R R R SRR R R RS R RS R R S AR AR E R ER AR RS R REREEESE NSRS E AN RE NN
4y . FORTRAN SUBROUTINE FOR BLASIUS PROFILE

' LA R AR RN AR E R R RS SR RS R R R R R RN SR 2RSSR 2R R AR R AR R R R R R R R R R R R R R R R R
A

:: The free-stream velocity U is given in argument AU, and the kinematic viscosity v

0 is given in argument Al The coordinates x, y are given in the arguments AY AY Series
expansions and error integrations are used in the evaluation of the Blasius profile.

“.. The components u, v are stored in functions FU, fV.
§
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TURBULENT PROFILE

Far downstream the flow 1n the boundary laver 1s turbulent There have been many
experiments on the turbulent boundary layer. In the absence of a fundamental theory
the experiments have been correlated with empirical formulations. A celebrated
formulation is the logarithmic law, which expresses mean velocity as the logarithm
of the distance from a wall. The logarithm cannot be used at the wall where velocity
1s zero and the logarithm is —e, or at infinite distance from the wall where velocity
1s finite and the logarithm is +w_ Corrections have been published by Reichardt* and
by Thompson® The argument of the logarithm is incremented by unity and the logarithm
1s blended with the free-stream velocity.

The Revnolds number R, is defined by the equation

R, = %E (27)
where U is the free—stream velocity. v 1s the kinematic viscosity and z is the distance
downstream. The drag D on the wall is given by the equation '

cx
D=3ipl? ——s 28
2P (log R,)%%® (28)
where the constant ¢ is defined by the equation
\"’ ¢ = 0.455 (log 10)3%® (29)
Uy
~'| This formulation is equivalent to Equation 21.16 in the text by Schlichting”. A shear
ALK ) q g
velocity u. 1s defined by the equation
Cose —
A T
Sl Us = \:‘— (30)
b °
:::::, where T is the shear stress at the wall. and p is the density The shear stress 7 is
A given by the equation
“o). dD
O T = E.‘L_' (31)
W
‘:o. C The boundary laver thickness § is determined by the equation
)
Wy
(Y U6 R,
- = 2.58 (32)
. v (log R,)*
o
‘._5'.: This equation is equivalent to Table 21.1 in the text by Schlichting”’. Finally the mean
¥ velocity u 1s given by the equation
“d
e
s U= U
St u=7——log<1+x—y>"(l—7)U (33)
Eo K v
h where x 1s a constant and ¥ is the blending function. The experimental value of « is
iy
,:: given by the equation
TP ]
‘Q::‘ x =040 (34)
oy
. ¥
o Various empirical schemes for the blending function have been tried. but a more
= logical basis for the blending function would be the error function To within
o
o 5
l‘o
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experimental error the blending function can be expressed by the equations

y erfin = 3)-erf(n - 3) .
pap—4 =1 35
m="% 2 erf(3) (35)

Then the blending function is in the range 1 >y >0 while y is in the range 0 <y <«
Differentiation with respect to r leads to the equation

258
PN S P ] 36
7Tt log R, log R (36)

= I

and further differentiation leads to the equation

2.5 3.5
% = apl® I(lo;:;i’axc)“a [ - 102)2,} (37)
Then the derivative of u. is given by the equation
Differentiation with respect to r leads to the equation
{ - 1.58
gg = u—“oj&—)—m |:log R, - %(2.58)1—1%% ] (29)
log R,
Then the derivative of 7 is given by the equation
dy ~vy MBI s
Ve T enm | s 140
Finally the derivative of u with respect to r is given by the equation
ULy
+ K

1 2

Although the derivatives are given by empirical functions with finite numbers of terms
their integration with respect to y would lead to an unlimited number of terms In a
practical integration with respect to y the integrand i1s best approximated by a power
polynomial in y and integrated term by term A discrete set of integrands is converted
into a discrete set of coefficients by 11 -point Lagrange interpolation and the integration
1s completed coefficient by coefficient.

The stream function ¥ 1s given by the equation

v
Y= [ u dy (42)
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and the vertical component v is given by the equation

"y ¥ Y Ju

‘;". . =~ 5__ dy (43)
: Y Jo OF

e : : ‘ :

1:.)' The integrations are performed with the aid of the following subroutine.

[ :

o SURROUTINE TBLNFF (AU, AN, AX, AY, FU, FV)

' 3 P R i A I I I R R S R R R R T R S R R R S A R SR S )
™ ./ . - v v

O FORTRAN SUBROUTINE FOR TURBULENT PROFILE.

?\'b. EEERKR AT E R AR TR ARG AR RS TR R AR R A AR R KRR R AR R KRR A RS AR K AR R R B R R AR R AR R A KRR AR R R AR TR AR R KR A XS TR
;’1":" The free-stream velocity [ is given in argument AU, and the kinematic viscosity v
LG is given in argument AN. The coordinates xr.y are given in the arguments AX AY.

Empirical formulations and Lagrange interpolation are used in the evaluation of the
turbulent profile The components u, v are stored in the functions 7,7V,

v, vy
g? LINE FLUX PROFILE
AL ’
;g};» The usual assumption is made that pressure is constant over a flat plate in a steady
‘.I_y' flow parallel to the plate. Let the free-stream velocity ~Ui be disturbed by a small
counter velocity v. The Fourier transform can be applied to a function which i1s zero
:p,:’ evervwhere except at the origin. Then Fourier integration leads to the equation
".' » +o0
3": ! 3 A ) AT +1iK
o v=~—- — i~ —jle Ydg 44
. ’l 2n o TS J ( )
¢
W That this expression for velocity has zero divergence can be verified directly b
y by
differentiation. Furthermore it can be derived from the stream function ¥ in the
:;:i: equation
”'l:' +o0 AT +1cy
g';"‘ 1 f e M
Wiy )= - — —— dk 45
:c.::n ¥ 27 J_w K * (45)
s

At =0 an application of the Euler theorem and an integration of the sine quotient

) function shows that ¥ = -  for all y>0 and ¢ = + 1 for all y<O0. Thus the flux in the

PR AT
::o':" counter flow is unity at r = 0 The curl of the velocity is given by the equation
t
N kK [ (A2 - x?)
e VAV o f (—-’— e TV di = 7k (46)
9,:,1 mTJ 1K
¥
To within small quantities of second order the vorticity satisfies the differential equation
it G 3%y 8%y
?n" U @ v (-_75 ~ _—;> (47)
:::‘. or or oy~
X
:&" Substitution of the Fourier integral into the differential equation leads to the equation
ot q
LA ]
. CUN =1 (A% - wP) (48)
"y . which may be solved by the quadratic rule to give the equation
) q £ q
o.:: DR
Y U Uy 2uk?
\ - + JEp— . 2 _
ot Aegn \( 2 ) . 2 422 (49)
':|l . <! <1 U« U+ 45k
o'
- The parameter A 1s an even function of the parameter & The radical is negative
P ; upstream and s positive downstream. Otherwise the integrals do not converge.
1. .! ‘ ‘ B
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When y 1= increased to mnfinity the integration with respect to « makes a significant
. contribution to the mtegration only where x — 0.
"\' . Upstream the parameter A is given by the himit
LV v

A== = (v = 0) (30)
‘ . 1’

v ) Thus the stream function y is given by the hmit

(y = £ =) (51)

wxle
0%' ¥ 2
‘::g‘ and the velocity v is given by the limit

) {y » ¢ =) (D2)

-
+
i
P
1
™

!
*‘1 The vertical component of velocity persists with increasing y. but dlmlmchec rapidly
with distance 'x upstream.

Downstream the parameter A is given by the limit

A-0 (x ~0) (33)
) Thus the stream function ¥ 1s given by the himit
') ¢_.:% (y = £ =) (54)

14 and the flux 1n the counter current is everywhere unity. It is independent of distance
r downstiream.

o In the integrals for the components of velocity the integrands are the products of
'i':: the monotonic factors

e ™ (55)

) and the oscillatory factor
s e (56)

" The integration through any number of cvcles of the oscillatory factor can be completed
BN if the monotonic factors are expressed as power series in k. The range of the power
N0 series is limited by the presence of the radical

( UV, e (57
o \ §f> o r 57)

"‘:‘: in the parameter A. For small values of « the radical is expressed by the equation
e —

(lj—_ S L I L
\ 2y U

This series converges only when »~ meets the hmitation

(58)

&N
£ 12"

20 7 (2m - )28 (m)?

L

- -
|

A

>

\

+

(59)

.';s-':.‘z

The series 1s an even function of & For large values of x the radical 1s expressed by
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“ f the equation
. U < . had _1')m~l zm), U \ dm
. \(7> K =n §© ( ,im ( (60)
"y 21 meo (2m — D2°M(m!)= \ 2k
1%y
::,' This series conver.:.~ only when a meets the limitation
:‘:': .
; 2 1 2
e
S P 6
[ ¥ U < X < U ( ])
N 4
w\l The series is an odd function of 1,x. Efficient evaluation of the series is only possible
: 3 if the ranges of their arguments are much less than the limits of their convergence.
oy The monotonic factors are expanded in each of a sequence of intervals of limited
range
The value of o 1n the first interval is given by the equation
" L 5
A K=n-90 (62)
::. N where 7 1s the center of expansion and 6 1s the variable of expansion. The variable 6
‘_ 1= given by the equation
N
0“!. g =cu (—l§u§*l) (63)
N where ¢ 1s half the range of expansion and u is a variable of interpolation. The first
7 interval straddles the origin where n = 0. then in subsequent intervals 7 is incremented
2% by 2¢. Thus the monotonic factors are approximated by the series
:\‘\ o0 A oo
™M= ¥ g y™m —e™M=Y g y™ (64)
m=0 K m=0
,:;:. Required for the computation of velocity are the integrals
lr:'. .1 +1
1 :! €'Y ( A u™ e V¥ du € e anpu™e*v du (65)
1::. Jo -1
E
“‘}' Required for the integration is the recurrence equation
o 11 ,um x4 m %1 )
:.2‘ J u™ VY% gy = [__ eu‘yu:l - — um-l e¥ VY gy (66)
- 0 ey 0 €Y Jo

v, The recurrence is started with the initial integral in the equation
‘a 1 orevu 2!

f €y ]
) The recurrence 1s cvceled 1n ascending order if ey satisfies the inequality

e eyy 2 17 (68)

(67)

e du = |

o] 0

0 Otherwise the recurrence is cycled in descending order with an initial approximation
for m - 64
L The value of x 1n the last interval is given by the equation

K= - (-1 sus+1)(69)

[N =

[}
' where 8 15 the lmit of integration. The last interval straddles the point where § = 0.

' Continuity through the point is achieved by giving to the radical in A the same sign
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as the sign of x The monotonic factors are approximated by the series

o A oo
C-(xfx)z - i‘ Cmum — e oz E Cmum (70)
"h m=0 X m=0
N

,:0.. Then the components of velocity are expressed in terms of the integrals

' ’ oo o0 6 m ) B )

"y Yoem -—] e T Wy (71)
i;'.‘g m=0 [ K

AN
n':ﬂ‘ Required for the integration is the recurrence equation

o gl . - —y) « _ o
. ’ 1 ermge [ T ] o f o e s Y dc (72)
s K™ (- Da™ !, (m-1yJ, am!

¢

The recurrence is started with the initial integrals in the equations

l'l oo -x(r-1y) o ‘
o f e T Wigg = - [—~—-——e : ] (73)
. A r =Yy s

‘” : Sl -6tr-ay) Lt
— J ZoemstEoy) g = f — dt = ~ Ei(-6(x - 1y)) (74)
Lt s X e :

oy The recurrence is cycled in descending order if §{x - iy) satisfies the inequality
A 16(x — iy)i € 17 (75)

;;:"‘ Otherwise the recurrence is cycled 1n ascending order with an initial approximation
N for m = 64.

:. For the series expansions the arguments have Chebyshev spacing and interpolations
y are made with 11-point central Lagrange interpolation. Preliminary computations have

) established a matrix of coefficients such that the coefficients for progressively increasing

) powers of the argument are obtained with the product of an array of values of the

'*'.I;: function and the matrix of coefficients.

ﬁo,"l If x satisfies the inequality

) 7U 18\° U 18

i RN 76)

My then ¢ and ¢ are given by the equations
. s ii18\* U 18
__ = — 6= —_— + - — 77
T WF)os o
and the last interval can be jettisoned without significant error. Otherwise ¢ and ¢

oy are given by the equations

| 7
'l';:n €= L— 6
1 ) Bv

]

mlﬂ
S~

(78)

in which case the Reynolds number is less than 36.
The components of velocity for the line flux are computed by the following subroutine.
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Y ~y - v . aye
":0.: : FORTRAN SUBROUTINE FOR LINE FLUX PROFILE
[} R R L e R R R R R A A R R R R R NS N N RN R R R SRS R E R R R AR SRR X
%
2‘.) The free-stream velocity U is given in argument AU, and the kinematic viscosity v 1s
) given in argument AN. The coordinates x, y are given in the arguments Ax. A>. Ascending
U and descending recurrence relations are used 1n the evaluation of Fourier integrals
!'.; for a line flux profile. The components u.v of velocity are stored in functions *..7v.
0‘.
::‘, : NONSLIP BOUNDARY
‘ # . . - . .
::\ Exploratory computations with LNFXPr have indicated the nature of the flow from
i a line flux.
If z and y are decreased to zero. the contribution to integration extends to large
X J values of x where A approaches the approximation
%ﬁ. !
aa A= — — T ik ' ‘wo-o ) (79
o T ( ) (79)
b
sty At the limit of small r and y the velocity is given by the equation
Y 1z~ yj
<8 ve-- Y (r~0.y~0) (80)
x} TIty
s
'.:-.','\ which is an eflux upstream and an influx downstream
\._:: When r is increased to infinity downstream. the integration with respect to x makes
) a significant contribution to the integration onlv where x ~0 and A approaches the
]i:" approximation
s y
oY A= —k? (x = 0) (81)
U
o
¢ : .
N Then the velocity is given by the equation
-‘-)'i v ( y > g (z ) (82)
‘ = - i+ —jle % T o>
c:::: N 4nvzx 2r J
b )
:t: ‘ This is a Gaussian distribution of velocity.
:‘:.. In a continuous distribution of line fluxes the efflux and the influx at the leading
b edge would tend to cancel. It is assumed that for integrated distributions the Gaussian
Wy profile is adequate.
'\:.: The formula for velocity does not meet a nonslip boundary condition because the
f:-:‘ velocity at y = 0 varies inversely as the square root of distance downstream. However,
,::i: a continuous distribution of line fluxes may be integrated to give a constant velocity.
:.e:' As a consequence of the equation
*  da Ty
= ——— e = 2| tan”! —-] =7 (83)
'::; : .’; vavzi-a [ Nr-al
"W
”:qés the integrated velocity is given by the equation
> —
I qul da .
(ibt N vir - a)— = - Ui (y = 0) (84)
. l 0 Va
:::':
X
K H
5
A"‘:ﬂ
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.‘f-. as required by the nonslip boundary condition. Thus the strength of line flux per unt
displacement 1s given downstream by the expression
v r —_——
L el
gy o 85
‘3:“1": \‘ afe (85)
"“.,‘,_0
::"‘::&‘ : The Gaussian distribution is equivalent to the dispersion of a line pulse of vorticity
",“ which has diffused outward for a time equal to the expression
ey T-a
wk (86)
L X U
My
,:: v and has been swept downstream with the speed U.
L
" FOURIER TRANSFORM
Yy let flr) be a periodic function c¢f r. Then 1t can be approximated by the Fourier
:: o series
i tag~ ¥ apcosnr+ ¥ b.sinnx (87)
’!'!l- n=1 n=1
= Inasmuch as cosines are even and sines are odd, they satisfy the equation
-
o o
i f coskrsinmrdr =0 (88)
A’ -
:!..‘3 Application of the Euler theorem to the following integrals
\ et ) s . et(k*m).t 4 e‘i!k—m)z i
O H e“"”’"drilf e“*""”d.r:—[_—————J :1[f——] =0 (k = m) (89)
.: ‘.Jv—t 2 - : ik +m)j_, ¢ itk -m)]_,
;‘ :E: shows that the triconometric functions satisfy the orthogonality relations
: ,.’1 o Al
R f coskrcosmzrdx = f sinkrsinmxdr =0 (90)
) - o
:'.:':’: Application of the addition theorem leads to the equations
Ry .
! *
s f dr = 2n (91)
() -
7".:"‘ +m i L
. f coskr dx = [ sinmrdz =n (92)
0::‘7' -n Jew
1
P The mean square error for the Fourier series is given by the equation
R .
,‘ 1 + <o o .
:‘,:::' 0= — [ flag + ¥ a,cosnz - ¥ b.sinnr - f(r)}fdx (93)
g T, - n=1 n=}
‘s’. ] Differentiation with respect to the coefficients shows that for least squares error the
::.l‘ coefficients are given by the equations
0..’0 1 + ] + §
:‘:h } a, = — f f(r) cosnx dx b, = — f f(r)sin nrdx (94) i
t:.'n mJon TJ a |
e Because of the symmetry of the trigonometric functions, the trigonomelric series is 1
in'.: “
Aty
f‘_’o. 12
o
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given by the equation

] n=+00 A+ l N:=+x A+ W
Ax) = 5= A J f(s)cosn(r - s)ds = - v fls) eMz-s) g (95)
= R g e d og
The substitutions
2nx 2ms .
I - L g —L— (9())

expand the range of approximation from 27 to L. The functions f(r) and f(s) are
replaced by the functions F(z) and F(s) as expressed by the equation

1 no ’%L "i’,fﬂ‘,.s\ ]
Flx)=- Y Fis)e ¢ ds {(97)
1‘ n=-oc —%L
The substitution
2nn (98)
K= —— ¢
L

replaces summation with respect to n by integration with respect to » in the himit as
L » = The approximation of summation by integration requires the functions to have
properties of irtegrability. The Fourier series is approximated by the Fourier transform

Ak) = 1 J"' F(x)e *Tdx (99)
27 J .
F(z)=f A(k) e** dx (100)

In a multidimensional space there is a Fourier transferm for each coordinate. Each
transform in a series of transforms can be applied to the amplitude of the previous
transform.

The two-dimensional transform is given by the equations

A(a,{:‘)-—-Z:TZJ‘J‘F(I.y)e"“"“'”'d.rdy (101)

F(z.y) = ff,i(o,ﬁ) e o8V 4o 4B (102)
Let ¢(x, y, z) be defined by the equation

"’aai 2, X T X3
plr,y. z)= [ [A(a.ﬁ’)e'\ Arizevaz-BY) 4o dB (103)
Then ¢ is a solution of Laplace'ls ;quation

% 0% %

TV = —L L. 104
7 82" dy?®  09z° (104)

wherever z # 0. The derivative of ¢ with respect to z 1s given by the equation
[ rva L g2 A(a. B e ORI “HarBv) go dB (105)
where the sign is - for z and the signis + for 2 ~ 0 The difference in the derivative
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on opposite sides of the plane z = 0 1s 470 where o 15 the source density on the plane
The amphtude

2xad - 8% 4(a. B) (106)

is the amphtude for 4mo For a unit source at the origin the amplitude 1s given by
the equation

Ala. f) = - 12_73_5 (107)
2n\sa“ -~ g

Two solutions of Laplace’s equation are 1dentical to within an additive constant if they
have the same normal derivative on a boundary. Thus the inverse of distance 1s given
by the equation

1 1 1

—_—- (-\(l“°ﬂzz~\(nx-ﬁ!l)d“ dﬁ (108)

roNrt-yt-2° En )

Application of the Fourier transform to the real exponential factor in the integrand
leads to the equation

1

1
- ==
T 2mc

1l il 1
l f ;2 - 62 - 72 Cuaxoﬁvwz) da dﬁ d7 (109)

The evaluation of this Fourier integral can be completed after a transformation of
coordinates.

Let «.08.¢ be polar coordinates with polar axis 1in the direction of r Then a. 8.y
are given by the equations

a=Kksinfcos¢ B=«ksmmBsing¢ y=xcos8 {110)
dadfdy »«k*sin 8 da d0 d¢ (111)

and integration with respect to 6. ¢ leads to the equation

11 1 2 =
== -—ZJ ff(~é>("“"°’ok'231n0dh d0 dg = - [ RLLLAFE (112)
r 2 ¥ mJeg KT

This equation confirms the existence of a Fourier transform for the potential of a
pole

Let 7. 0. ¢ be polar coordinates with polar axis 1n the direction of x Then r.y. =z are
given by the equations

r=rsinfcos¢ y=rsinfsing z=rcos@ (113)
drdydz -~ r¥sin 8 dr d0 d¢ (114)
Another solution of laplace’s equation 1s given by the equation
a /1 cos 8
- —<) T {115)
2 \r r
Its Fourier amplitude 1s given by the equation
1 ‘cos 8
AlK) = —; [ [.H“’: >e""°°"°r2sm()drd0d¢ (116)
8nY J . r

Integration with respect to 8, ¢ is completed with an integration by parts to give the
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equation
= sin(xr)) d
A(x) = > [ Scos(xr) - (AJ car (117)
Inch Jg KT ) or

Integration with respect to r is completed with an integration by parts to give the
equation

Ak) = izh. [in(f—r—)] S (118)

27 kr o 2n3x

This equation confirms the existence of a Fourier transform for the potential gradient
of a pole.
The gradient of inverse distance is given by the equation

v(l‘),wﬁ_ﬂi;k__ t (
- LI
T 2 - y? - 2342 2n= J .

r P ai - B~ vk
' 0)2 BJZ 72 (_uaxdfy»-yz)da dﬁ d'y (‘119)
(% a - ﬁ - 7 ‘

The velocity of a point vortex of unit strength is given by the equation

L R o
(3) TN

I T

J\ [‘M__ caz+By13) 4, dg dy (120)

7 a? - B2 - 9*

3
-~ y2 + %2

This equation confirms the existence of a Fourier transform for the velocity of a point
vortex.

The circulation around a circle at coordinates r.0 1s given bv the equation

sin?f
f\'-drz—é z (121)

r

A change from spherical polar coordinates to cvlindrical polar coordinates and
integration with respect to z with the aid of the equation

T rtayt dz vrdeyte 2?0
z F4

(122)

2 :
cew 2 vrisyd+z:

— oo

confirms that the circulation is unity around a line vortex of unit strength and of
infinite length.

INCOMPRESSIHLE FLUID

Let r be a position vector 1in physical space and let ¥ be a position vector in wave
number space The position vectors are defined by the equations

r=uzxi+yj+zk x = al~ B+ vk (123)

where . j. k are orthogonal umt vectors
Let the velocity vector v at the position vector r be expressed by the equation

vir) - fA(vc)c‘”,dni (124)

where ¥ 1s a vector in wave number space. 'dx 1s a volume clement 1n wave number
space. and A(x) 18 the amphtude of the Fourier component with wave number x The
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arnplitude is given by the equation

i."; . ~) — ___]__ ' . N1 A4 : 0
‘::" A(x) = Pl v(r) ¢ dr; (125)

3
\
¥
$¢ where idr' is a volume element in physical space The gradient of velocily is given by
the equation

') szifo(t:)c“'r ! (126)
f‘f't" the divergence of velocity is given by the equation
oY vv=1 f ®-A(X) €' idK (127)
and the curl of velocity is given by the equation
::‘.; Vv = i fv:xA(v:)c'” daw (128)
JON The Laplacian of velocity is given by tlhe equation
V¥V = - fnzA(x)c“'dx; (129)
The amplitude ®-A(x) of the divergence V-v is given directly by the equation
' x-AlR) = élﬂ:—, ’ V-ove ™7 dr| {130)
B If the divergence 1s zero for every r in physical space. the amplitude is zero for every x
in wave number space. The amplitude satisfies the orthogonality equation
o x-A(x)=0 (131)

':!’" If a nonzero divergence did happen to occur in an incompressible fluid, a pressure
:::.‘ pulse would be created. and the nonzero divergence would be dispersed by a potential
flow

2 Terms which are quadratic in velocity are expressed by double integrals Let x; and x;,
WY be variables of integration in the double integration. Incompressibility 1s expressed
) by the equations

e x,-Alx, )= 0 (x, - %z)-Al%, ~%x;)=0 x2A(x;) =0 (132)

{ When terms with the same wave number are collected 1n the integration the amplitudes
o are collected 1n a convolution. The product of velocity and its gradient 1s given by the
"\v: equation

v-Uv =1 AR, AR, - xp) e VT de, ) (133)
R FRAN 2

The square of the gradient 1s given by the equation

T.’- (Vv-Vv) = - l l Ak % %, -Ale, k) e dx, dy (134)

o This scalar is the divergence of the vector

' - _
o . [ [A(xz)-'—cl—'-i-!-,x(n, Cw) €T dw, ey (135)
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The gradient of pressure is given by the equation

K, K, K,

Vp=-pi ’ [A(nz). L Ak, ~ w,) eV N idw, ) diwgl (136)

1Ny
Substitution 1n the equation of motion leads to the integro-differential equation

a ~ A
— A(w,) = - i lUiwAlx)) - ifA(}:ﬁ-(l . )x,-A(n, - %,) ldw,| — i X, ¥,A(x,) (137)
ot LR p

which expresses the evolution of the spectral representation of the velocity in an
unbounded fluid.

The rate of change of amplitude is expressed as the sum of three terms The first
term replaces r in the Fourler transform with r - Ut The second term expresses the
influence of amphtude at other points in wave number space. The third term gives
the rate of viscous dissipation.

The rate of change of A(w,) is 1nfluenced by the presence of A(x,) in the vicinity
of %, In the integrand the postmultiplication of A(x;) by a tensor eliminates any
component of A(x;) in the direction of %,. Other terms outside the integral are the
products of scalars and A(x;). Thus the integro-differential equation preserves the
orthogonality of x, and A(w,).

There is no contribution to the integration where x, 1s orthogonal to %, and A(x,)
1= parallel to x,. There 1s no contribution to the integration where %, 1s collinear
with x; and Ak, - x;) 18 orthogonal to x,. If ¥, is on the perpendicular bisector of %,
then mterchange of %, and x; - x, leaves amplitudes the same but reverses the sign.
There i1s no contribution to the integration by integration along the perpendicular
bisector of x, There i1s a maximum contribution to the integration when %, is on the
perpendicular to w; through the tip of ;. The influence of A(x;) is a pattern which
is crossed by nodal lines.

DIFFUSION

During unbounded evolution the velocity deviates gradually from the boundary
conditions at the surface of a plate. Velocity is injected gradually into the stream to
maintain the boundary conditions. It is only at the surface of the plate that velocity
1= injected Everywhere else the evolution of velocity is free. Let the plane with plate
be divided into an equally spaced grid. Over each grid point there is a sine quotient
function Each sine quotient function is unity at its own grid point and 1s zero on
every grid hine which does not pass through the grid point. An analytic function can
be expressed as a series in sine quolient functions. The coefficients of the terms in
the series are just the values of the function at the grid points The terms for defect
in velooity are finite only for grid points within the area of the plate. The sine quotient
function at any grid point can be expressed by a Fourier transform. The amphtude
of the Fourier transform is a rectangle of constant density in wave number space.

Let . y. z be Cartesian coordinates relative to a grid point with r positive downstream,
with y positive across the stream. and with z positive perpendicular to the stream
Let Q(a. ) be the Fourter amphtude for the sine quotient function for the grid point
and Jet A be the defect of veloeity at the grid point The velocity is injected into the
laminar sublaver where the absence of convection reduces the equation of motion to
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N
3
W
B the diffusion equation
I ov 8% 3% 8%
‘J s —-:Ll(——~o+ — + - 1) (138)
.!"i at Oxr<  dyc  09z°
N
;i The defect 1n boundary condition is concentrated initially against the plate surface
(‘l and then diffuses outward. The velocity for a defect A 1s given by the equation
' 2 ™ ~u? -v(az‘pzitﬂ(az+p )
v A= e ™ du Qla.B)e Vida dg (139)
Lo, NS PUNCI .
.5,, Nt
o in which the velocity 1s proportional to the complementary error function. That this
:- 1s a solution of the diffusion equation can be verified bv direct substitution if z = 0.
o The error function i1 symmetric with respect to the plane z = 0. The Fourier
) amplitude of the error function 1s the sum of an integration in the range -« <z <0
]
-\" and an integration in the range 0« = < +o. The integrals 1n the two ranges are complex
J\. conjugates fntegration by parts in each range and cancellation of complex conjugates

lead to the equation

Mg

‘:‘-‘. v e o Aoo 2 ‘—72Ul o 417\”1—‘—1 2
" ' « V= e dudz = —— — f e Y du (]40)
J o N3 7y v Joywvm

AR I3

The amphtude of the error function 1s an even real function of ¥ The velocity is given
bv the equation

EX ¥

o
s et . ,
}!. ‘. _)A J j ‘ (37 ’ €41‘2 du Q(O B) e—L'(a“.ﬂz,7“)[01(01‘*3!/072) da dB dy (141)
. <T S Jd N d o y
i:' To verify this equation the error function can be replaced by its absolutely convergent
,\-} power series. then term-by-term integration leads to the series for the arcsine of
" unity The equation gives the tmitial velocity for the defect A The velocity continues
ber to evolve thereafter 1n accordance with the full equation of motion for unbounded flow.
.) DISCUSSION
», -
e An analysis of the complete Navier-Stokes equation for Reynolds numbers less than
X 1218 has been given by Schwiderski and Lugt® They found overshoot in the velocity
profile and the overshoot increased with Revnolds number There does not seem to
s be any confirmation for the overshoot. There is no overshoot in the Blasius profile.
Validation of the Blasius theory for Reynolds numbers more than 100000 is given by
:‘Q' the excellent agreement between measurement and theory in Figure 7.9 in the text
Y by Schlichting”. It would be nice to have more experimental data for a smaller Reynolds
Ty number.
v;:: The flux of momentum across any cross section 1s equal to the drag upstream of
:'.' the cross section The flux of momentum is given by the integral
,::;' f ull’ - u)dy (142)
.‘o: Jo
ob
::: ) where u 1s the instantancous velocity an the fluid The instantaneous velocity can be
g replaced by mean velocity only 1n the case of Jaminar flow Otherwise the mean square
o of the instantanecous velocity 1s greater than the square of the mean velocity by the
. mean square of the fluctuation in velocity.
Q
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W Heretofore it has been assumed that the blending function for a turbuient boundary
laver is symmetric with respect to the middle of the boundary laver. and is zero
outside the thickness of the boundary laver. It 1s more likelv that the blending function
" diminishes gradually with distance. An empirical formulation 1s compared with
experimental data in the following figure

l" : 1 ;

0 y

p,’f 5
where the curve represents Equation {35) and the circles are from a tabulation in the
kLA report by Thompson?.
(g The assumption that the horizontal component of velocity is constant evervwhere

in the free stream leads to a vertical component which persists to infinite distance
N frem the boundary. However, the distribution of vertical velocity initiates a jet and
o diffusion of vorticity disperses the jet in the free stream.
At the leading edge of a boundary layer the flow is laminar, but the flow becomes
¢ unstable where the Reynolds number is 520, and the flow becomes fully turbulent
’,?:f where the Reynolds number is 500000. For a free-stream flow at 20 knots the laminar
) flow 1s unstable at only one twentieth of a millimeter downstream, and the flow is
fully turbulent at five centimeters downstream. Any laminar flow in the boundary laver
of a full-scale ship is insignificant.

R CONCLUSION

It is concluded that the most practical representation of the mean velocily is a
( generalization of the empirical formulation by Schlichting.
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